
Overview
Microsoft® Access provides a number of tools that you can use to create a relational
database even if you don't have much experience with relational design. For example, you
can use the Database Wizard to create over 20 different types of databases, from an Asset
Tracking database to a Music Collection database.
Or, if you already have your data in a spreadsheet or table of some sort, but you have
repeating data (unnormalized data) and you want to separate the data out into two or more
relational Microsoft Access tables, you can use the Table Analyzer Wizard to help you
decide which fields need to be moved to separate tables.
If you're not satisfied with having Microsoft Access do the work for you, however, and you
want to know more about relational database design, this Web page is for you. It shows you
how to plan and design a database from the ground up. For practical examples, it uses the
database design of the Northwind Traders sample database included in the Microsoft Access
package.

The Database Design Process
The key to understanding the database design process lies in understanding the way a
relational database management system, such as Microsoft Access, stores data. To
efficiently and accurately provide you with information, Microsoft Access needs to have the
facts about different subjects stored in separate tables. For example, you might have one
table that stores only facts about employees, and another that stores only facts about sales.
When you use your data, you then combine and present facts in many different ways. For
example, you may print reports that combine facts about employees and facts about sales.

When you design a database, you first break down the information you want to keep as
separate subjects, and then you tell Microsoft Access how the subjects are related to each
other so that Microsoft Access can bring the right information together when you need it.

Steps in Designing a Database

Here are the steps in the database design process. Each step is discussed in greater detail
in the remaining sections of this paper.
Step One: Determine the purpose of your database. This will help you decide which facts
you want Microsoft Access to store.
Step Two: Determine the tables you need. Once you have a clear purpose for your
database, you can divide your information into separate subjects, such as "Employees" or
"Orders." Each subject will be a table in your database.
Step Three: Determine the fields you need. Decide what information you want to keep in
each table. Each category of information in a table is called a field and is displayed as a
column in the table. For example, one field in an Employees table could be Last Name;
another could be Hire Date.
Step Four: Determine the relationships. Look at each table and decide how the data in
one table is related to the data in other tables. Add fields to tables or create new tables to
clarify the relationships, as necessary.
Step Five: Refine your design. Analyze your design for errors. Create the tables and add a
few records of sample data. See if you can get the results you want from your tables. Make
adjustments to the design as needed.
Don't worry if you make mistakes or leave things out of your initial design. Think of it as a
rough draft that you can refine later. Experiment with sample data and prototypes of your
forms and reports. With Microsoft Access, it's easy to change the design of your database as
you're creating it. However, it becomes much more difficult to make changes to tables after
they're filled with data and after you've built forms and reports. For this reason, make sure
that you have a sound design before pushing too far ahead.

Common Design Problems
There are several common pitfalls you may encounter when designing your database. These
problems can cause your data to be harder to use and maintain. The following are signs that
you should reevaluate your database design:
• You have one table with a large number of fields that don't all relate to the same subject.

For example, one table might contain fields pertaining to your customers as well as fields
that contain sales information. Try to make sure each table contains data about only one
subject.

• You have fields that are intentionally left blank in many records because they aren't
applicable to those records. This usually means that the fields belong in another table.

• You have a large number of tables, many of which contain the same fields. For example,
you have separate tables for January sales and February sales, or for local customers
and remote customers, in which you store the same type of information. Try
consolidating all the information pertaining to a single subject in one table. You may also
need to add an extra field, for example, to identify the sales date.

Determining the Purpose
The first step in designing a Microsoft Access database is to determine the purpose of the
database and how it's to be used. This tells you what information you want from the
database. From that, you can determine what subjects you need to store facts about (the
tables) and what facts you need to store about each subject (the fields in the tables).
Talk to the people who will use the database. Brainstorm about the questions you'd like the
database to answer. Sketch out the reports you'd like it to produce. Gather the forms you
currently use to record your data. You'll use all this information in the remaining steps of the
design process.

Example: Tracking Sales and Inventory

Suppose that Northwind Traders, an import/export company that sells specialty foods from
around the world, wants a database that can track information about the company's sales
and inventory.
Start by writing down a list of questions the database should be able to answer. How many
sales of our featured product did we make last month? Where do our best customers live?
Who's the supplier for our best-selling product?
Next, gather all the forms and reports that contain information the database should be able
to produce. Northwind Traders currently uses a printed report to keep track of products being
ordered and an order form to take new orders. The following illustration shows these two
documents.

Northwind Traders also needs to print mailing labels for customers, employees, and
suppliers.
After gathering this information, you're ready for the next step.

Determining the Tables You Need
Determining the tables in your database can be the trickiest step in the database design
process. That's because the results you want from your database -- the reports you want to
print, the forms you want to use, the questions you want answered -- don't necessarily
provide clues about the structure of the tables that produce them. They tell you what you
want to know, but not how to categorize the information into tables.
See the preceding order form as an example. It includes facts about the customer -- the
customer's address and phone number -- along with facts about the order. This form
provides you with a number of facts that you know you want to store in your database. But
you'd run into problems if you stored the customer facts in the same table as the order facts:
• Introducing errors in duplicate information. Suppose that one customer places three

different orders. You could add the customer's address and phone number to your
database three times, once for each order. But this multiplies the chance of data entry
errors.

Also, if the customer moves, you'd have to either accept contradictory information or find
and change each of that customer's sales records in the table. It's much better to create

a Customers table that stores the customer's address in your database once. Then if you
need to change the data, you change it only once.

• Deleting valuable information. Suppose a new customer places an order and then
cancels. When you delete the order from the table containing information on both
customers and their orders, you would delete the customer's name and address as well.
But you want to keep this new customer in your database so you can send the customer
your next catalog. Again, it's better to put the information about the customer in a
separate Customers table. That way you can delete the order without deleting customer
information.

Look at the information you want to get out of your database and divide it into fundamental
subjects you want to track, such as customers, employees, products you sell, services you
provide, and so on. Each of these subjects is a candidate for a separate table.
Note One strategy for dividing information into tables is to look at individual facts and
determine what each fact is actually about. For example, on the Northwind Traders order
form, the customer address isn't about the sale; it's about the customer. This suggests that
you need a separate table for customers. In the Products On Order report, the supplier's
phone number isn't about the product in stock; it's about the supplier. This suggests that you
need a separate table for suppliers.

Example: Designing Tables in the Northwind Database

The Northwind Traders order form and Products On Order report include information about
these subjects:
• Customers
• Suppliers
• Products
• Orders
From this list, you can come up with a rough draft of the tables in the database and some of
the fields for each table.

Although the finished Northwind database contains other tables, this list is a good start. Later
in this paper, you'll see how to add other tables to refine your design.

Determining the Fields You Need
To determine the fields in a table, decide what you need to know about the people, things, or
events recorded in the table. You can think of fields as characteristics of the table. Each
record (or row) in the table contains the same set of fields or characteristics. For example, an
address field in a customer table contains customers' addresses. Each record in the table
contains data about one customer, and the address field contains the address for that
customer.

Tips for Determining Fields
Here are a few tips for determining your fields:
• Relate each field directly to the subject of the table. A field that describes the subject

of a different table belongs in the other table. Later, when you define relationships
between your tables, you'll see how you can combine the data from fields in multiple
tables. For now, make sure that each field in a table directly describes the subject of the
table. If you find yourself repeating the same information in several tables, it's a clue that
you have unnecessary fields in some of the tables.

• Don't include derived or calculated data. In most cases, you don't want to store the
result of calculations in tables. Instead, you can have Microsoft Access perform the
calculations when you want to see the result. For example, the Products On Order report
shown earlier in this paper displays the subtotal of units on order for each category of
product in the Northwind database. However, there's no Units On Order subtotal field in
any Northwind table. Instead, the Products table includes a Units On Order field that
stores the units on order for each individual product. Using that data, Microsoft Access
calculates the subtotal each time you print the report. The subtotal itself doesn't need to
be stored in a table.

• Include all the information you need. It's easy to overlook important information.
Return to the information you gathered in the first step of the design process. Look at
your paper forms and reports to make sure all the information you have required in the
past is included in your Microsoft Access tables or can be derived from them. Think of
the questions you will ask Microsoft Access. Can Microsoft Access find all the answers
using the information in your tables?

• Store information in its smallest logical parts. You may be tempted to have a single
field for full names, or for product names along with product descriptions. If you combine
more than one kind of information in a field, it's difficult to retrieve individual facts later.
Try to break down information into logical parts; for example, create separate fields for
first and last name, or for product name, category, and description.

Example: Adding Fields to the Products Table

Northwind Traders sells imported specialty foods from around the world. The employees use
a Products On Order report to keep track of products being ordered.

The report indicates that the Products table, which contains facts about products sold, needs
to include fields for the product name, units in stock, and units on order, among others. But
what about fields for the supplier name and phone number? To produce the report, Microsoft
Access needs to know which supplier goes with each product.
One approach would be to include Supplier Name and Supplier Phone fields in the Products
table, but this can cause more problems than it solves. Since Northwind Traders might buy
many products from the same supplier, the name and phone number of the supplier would
have to be repeated in the Products table many times. If the phone number ever changed, it
would have to be changed many times as well.

Instead, create a Suppliers table, with separate fields for the supplier's name and phone
number. In the next step, you'll add a field to the Products table that identifies the supplier
information you need.

Primary Key Fields
The power in a relational database management system such as Microsoft Access comes
from its ability to quickly find and bring together information stored in separate tables. In
order for Microsoft Access to work most efficiently, each table in your database should
include a field or set of fields that uniquely identifies each individual record stored in the
table. This is often a unique identification number, such as an employee ID number or a
serial number. In database terminology, this information is called the primary key of the
table. Microsoft Access uses primary key fields to quickly associate data from multiple tables
and bring the data together for you.
If you already have a unique identifier for a table, such as a set of product numbers you've
developed to identify the items in your stock, you can use that identifier as the table's
primary key. But make sure the values in this field will always be different for each record --
Microsoft Access doesn't allow duplicate values in a primary key field. For example, don't
use people's names as a primary key, because names aren't unique. You could easily have
two people with the same name in the same table.
If you don't already have a unique identifier in mind for a table, you can use a field that
simply numbers the records consecutively. Microsoft Access can even set up a primary key
like that for you. For more information, search for "AutoNumber" in Microsoft Access Help.
When choosing primary key fields, keep these points in mind:
• Microsoft Access doesn't allow duplicate or null values in a primary key field. For this

reason, you shouldn't choose a primary key that could contain such values.
• You may use the value in the primary key field to look up records, so it shouldn't be too

long to remember or type. You may want it to have a certain number of letters or digits,
or be in a certain range.

• The size of the primary key affects the speed of operations in your database. When you
create primary key fields, you can set a property to limit the size of the field. For best
performance, use the smallest size that will accommodate the values you need to store
in the field. For more information, search for "field size" in Microsoft Access Help.

Example: Setting the Primary Key for the Products Table

The primary key of the Northwind Products table contains product ID numbers. Because
each product number identifies a different product, you don't want two products with the
same number.

In some cases, you may want to use two or more fields that together provide the primary key
of a table. For example, the Order Details table in the Northwind database uses two fields as
its primary key: Order ID and Product ID. In the next step, you'll see why.

Determining the Relationships
Now that you've divided your information into tables, you need a way to tell Microsoft Access
how to bring it back together again in meaningful ways. For example, the following form
includes information from several tables.

Microsoft Access is a relational database management system. That means you store
related data in separate tables. Then you define relationships between the tables, and
Microsoft Access uses the relationships to find associated information stored in your
database.
For example, suppose that you want to phone an employee with questions about a sale the
employee made. Employee phone numbers are recorded in the Employees table; sales are
recorded in the Orders table. When you tell Microsoft Access which sale you're interested in,
Microsoft Access can look up the phone number based on the relationship between the two
tables. It works because Employee ID, the primary key for the Employees table, is also a
field in the Orders table. In database terminology, the Employee ID field in the Orders table
is called a foreign key, because it's a primary key from a different table.

Note If you open the Orders table in the sample Northwind database included with
Microsoft Access in Datasheet view, you’ll notice that there is an Employees field but no
Employee ID field. The Employees field is actually the Employee ID field, but the Caption
property is set to “Employee” and properties have been set on the Lookup tab to display the
employee names rather than the ID numbers. The illustration above uses the Employee ID
field to make the association between the tables clear. Later illustrations in this document
also show the ID fields for education purposes rather than the lookup text that appears in the
Northwind database. To learn more about how lookup tables work, search for “lookup table”
in Microsoft Access Help.
So, to set up a relationship between two tables -- Table A and Table B -- you add one table's
primary key to the other table, so that it appears in both tables. But how do you decide which
table's primary key to use? To set up the relationship correctly, you must first determine the
nature of the relationship. There are three types of relationships between tables:
• One-to-many relationships
• Many-to-many relationships
• One-to-one relationships
The rest of this section presents an example of each type of relationship and explains how to
design your tables so that Microsoft Access can associate the data correctly.
Note This section explains how you determine the relationships between your tables and
how you decide which fields belong in the tables to support those relationships. You use the
Relationships window to create the relationships. For more information, search for
"Relationships window" in Microsoft Access Help.

Example: Creating a One-to-Many Relationship

A one-to-many relationship is the most common type of relationship in a relational database.
In a one-to-many relationship, a record in Table A can have more than one matching record
in Table B, but a record in Table B has at most one matching record in Table A.
For example, the Suppliers and Products tables in the Northwind database have a one-to-
many relationship.

To set up the relationship, you add the field or fields that make up the primary key on the
"one" side of the relationship to the table on the "many" side of the relationship. In this case,
you would add the Supplier ID field from the Suppliers table to the Products table, because

one supplier supplies many products. Microsoft Access uses the supplier ID number to
locate the correct supplier for each product.

Example: Creating a Many-to-Many Relationship

In a many-to-many relationship, a record in Table A can have more than one matching
record in Table B, and a record in Table B can have more than one matching record in Table
A. This type of relationship requires changes in your database design before you can
correctly specify the relationship to Microsoft Access.
To detect many-to-many relationships between your tables, it's important that you look at
both directions of the relationship. For example, consider the relationship between orders
and products in the Northwind Traders business. One order can include more than one
product. So for each record in the Orders table, there can be many records in the Products
table. But that's not the whole story. Each product can appear on many orders. So for each
record in the Products table, there can be many records in the Orders table.

The subjects of the two tables -- orders and products -- have a many-to-many relationship.
This presents a problem in database design. To understand the problem, imagine what
would happen if you tried to set up the relationship between the two tables by adding the
Product ID field to the Orders table. To have more than one product per order, you need
more than one record in the Orders table per order. You'd be repeating order information
over and over for each record that relates to a single order -- an inefficient design that could
lead to inaccurate data. You run into the same problem if you put the Order ID field in the
Products table -- you'd have more than one record in the Products table for each product.
How do you solve this problem?
The answer is to create a third table that breaks down the many-to-many relationship into
two one-to-many relationships. You put the primary key from each of the two tables into the
third table.

Each record in the Order Details table represents one line item on an order. The Order
Details table's primary key consists of two fields -- the foreign keys from the Orders and
Products tables. The Order ID field alone doesn't work as the primary key for this table,
because one order can have many line items. The Order ID is repeated for each line item on
an order, so the field doesn't contain unique values. The Product ID field alone doesn't work
either, because one product can appear on many different orders. But together the two fields
always produce a unique value for each record.
In the Northwind database, the Orders table and the Products table aren't related to each
other directly. Instead, they are related indirectly through the Order Details table. The many-
to-many relationship between orders and products is represented in the database using two
one-to-many relationships:
• The Orders and Order Detail tables have a one-to-many relationship. Each order can

have more than one line item, but each line item is connected to only one order.
• The Products and Order Detail tables have a one-to-many relationship. Each product

can have many line items associated with it, but each line item refers to only one
product.

Example: Creating a One-to-One Relationship

In a one-to-one relationship, a record in Table A can have no more than one matching record
in Table B, and a record in Table B can have no more than one matching record in Table A.
This type of relationship is unusual and may call for some changes in your database design.
One-to-one relationships between tables are unusual because in many cases, the
information in the two tables can simply be combined into one table. For example, suppose
you created a Ping-Pong Players table to track information about a Northwind Traders ping-
pong fundraising event. Because the ping-pong players are all employees of Northwind
Traders, this table has a one-to-one relationship with the Employees table in the Northwind
database.

You could add all the fields from the Ping-Pong Players table to the Employees table. But the
Ping-Pong Players table tracks a one-time event, and you won't need the information after
the event is over. Additionally, not all employees play ping-pong, so if these fields were in the
Employees table, they would be empty for many records. For these reasons, it makes sense
to create a separate table.
When you detect the need for a one-to-one relationship in your database, consider whether
you can put the information together in one table. If you don't want to do that for some
reason, here's how to set up the relationship:
• If the two tables have the same subject, you can probably set up the relationship by

using the same primary key field in both tables.
• If the two tables have different subjects with different primary keys, choose one of the

tables (either one) and put its primary key field in the other table as a foreign key.

Refining the Design
Once you have the tables, fields, and relationships you need, it's time to study the design
and detect any flaws that might remain.
Create your tables, specify relationships between the tables, and enter a few records of data
in each table. See if you can use the database to get the answers you want. Create rough
drafts of your forms and reports and see if they show the data you expect. Look for
unnecessary duplications of data and eliminate them.
As you try out your initial database, you will probably discover room for improvement. Here
are a few things to check for:
• Did you forget any fields? Is there information that you need that isn't included? If so,

does it belong in the existing tables? If it's information about something else, you may
need to create another table.

• Did you choose a good primary key for each table? If you use it to search for specific
records, is it easy to remember and type? Make sure that you won't need to enter a
value in a primary key field that duplicates another value in the field.

• Are you repeatedly entering duplicate information in one of your tables? If so, you
probably need to divide the table into two tables with a one-to-many relationship.

• Do you have tables with many fields, a limited number of records, and many empty fields
in individual records? If so, think about redesigning the table so it has fewer fields and
more records.

Example: Refining the Products Table

Each product in the Northwind Traders stock falls under a general category, such as
Beverages, Condiments, or Seafood. The Products table could include a field that shows the
category of each product.

Suppose that in examining and refining the database, Northwind Traders decides to store a
description of the category along with its name. If you add a Category Description field to the
Products table, you have to repeat each category description for each product that falls
under the category -- not a good solution.
A better solution is to make Categories a new subject for the database to track, with its own
table and its own primary key. Then you can add the primary key from the Categories table
to the Products table as a foreign key.

The Categories and Products tables have a one-to-many relationship: one category can
have more than one product in it, but any individual product can belong to only one category.

Additional Reading and Practice
For additional ideas on designing a database, you may want to look at the database
schemas for one or more of the databases that you can create with the Database Wizard.
For information on using the Database Wizard, search for "Database Wizard" in Microsoft
Access Help.
If you want to do additional reading on database design, you may want to look at some of the
following books.
Date, C. J. An Introduction to Database Systems. 5th ed. Vol. 1. Reading: Addison-Wesley
Publishing Co., 1990.
Kroenke, David, and Kathleen Dolan. Database Processing: Fundamentals, Design, and
Implementation. Chicago: Science Research Associates, 1988.
Pascal, Fabian. SQL and Relational Basics. Redwood City: M&T Books, 1990.
Viescas, John L. Running Microsoft Access. Redmond: Microsoft Press, 1993.

