
Introduction
The average American is somehow “processed” by a database upwards of 40 times a day.
In most of today’s organizations, PC and mainframe databases form a range of applications
from straightforward customer list management to mission-critical programs. Yet databases
are not nearly as well understood as spreadsheets and word processors. Be it because of
database programs’ size, conceptual complexity, or their interdependence with the fast-
changing world of networking, many computer users steer a wide path around databases.
This document provides a brief introduction to the most important concepts of the PC
database world. It begins with a working definition of a database, moves on to a short
history of database management systems, sketches the current market and outlines its
players, and ends with a glossary of database terminology.

What is a Database?

A database is a collection of information related to one topic,
organized so that a user can easily look at it, add to it, and change
it.

Although most people think only of computerized databases, in fact we are surrounded by
databases of all types. A dictionary, for instance, is a common database that allows users to
determine a word’s spelling, part of speech, and definition quickly and easily. Similarly, a
card file containing friends’ names and addresses, a phone book, a collection of recipes, and
TV Guide are all common forms of databases. Computerized databases include customer
files, employee rosters, equipment inventories, and sales transactions.

Database design requires some planning.
To use a database effectively, the database designer must organize the database in a logical
way. Imagine how annoying it would be to use a dictionary not printed in alphabetical order!
Database design is in some sense arbitrary: while for most people a dictionary is most useful
when arranged alphabetically, some linguists might prefer one sorted by part of speech, with
separate sections containing nouns, verbs, and adjectives. Likewise, a company’s customer
database might simply contain a block of information called “customer address,” or might
have several smaller pieces of data called “street name,” “city,” “state,” and “ZIP code”— the
configuration will depend on how the designer intends to use the system. But while there is
no one right way to design a database, there are ways that will make it much easier for users
to get at relevant information. Indeed, researchers have spent years and written thousands
of pages to guide efficient database design.

Databases have different modes of operation.
People use a database by putting data in, asking questions, and getting answers. Each of
these modes gives rise to a different interface. For instance, data entry clerks often use
screens designed to look like printed forms. These forms, in turn, send the data to the
various tables where the data is stored. If a person wants to browse through many records,
he would want to see a spreadsheet-like representation of the data. But to ask the database
questions, a user might want a simple, uncluttered screen on which to formulate the request,
rather than one chock full of data. And the report-generator part of a database system is
likely to have a different look entirely, one that makes it easy to design groupings, summary
lines, headers, and footers. The effect is that database systems can seem to be several
programs in one— like spreadsheets with different modes for entering data and creating
charts, databases have modes for designing tables, browsing, creating reports, programming
applications, and so on.

The word "database" means different things to different people.
• Some people press spreadsheets into use as databases. While most spreadsheets

have database functions, they also have severe limitations that a true database program
overcomes. See Section 4.2, below, for a complete discussion of the limitations of using
a spreadsheet as a database.

• In the dBASE® world, the word “database” refers to what database theorists define as a
“table”; dBASE does not have the concept of a single, unified database. Microsoft®
Access, by contrast, uses “database” to mean “a collection of information.”

• When some people refer to a database, they are really talking about a textbase—
software that can locate and extract unstructured information (like newspaper articles),
without reference to records and fields. None of the products discussed in this paper
falls into the category of a textbase.

This paper should help cut through some of the confusion surrounding database
terminology. For additional help, see the Glossary— Section 11 at the end of this document.

Who Uses a Database?
People who use databases tend to be spread over a very wide spectrum of sophistication—
a significantly wider range than that of spreadsheets and word processors users. Because
of the perceived complexity of database systems, and because DBMSs often require users
to learn a computer language in order to access their full power, companies with information
needs frequently hire developers to build custom applications around a database in order to
insulate users from the system’s complexities. Thus, the sophistication spectrum ranges
from data entry clerks who may not even realize which database they are using, to
developers who write applications using DBMSs. More specifically,
• Data entry clerks and novice users accomplish tasks with their databases— tasks like

maintaining customer files and performing mail merges to generate form letters. In many
cases, these users work with applications written by others.

• Power users access information with their database, albeit with some degree of difficulty.
These are the users who create relatively sophisticated reports like crosstabs, but
typically have to turn to their manual to do so.

• Developers create database applications for other users— who may be Data Entry
clerks— to use. They may not be great interactive users of the product, but have
expertise in designing systems for others.

Why Use a Database?

People use databases to keep track of things.
In broad terms, a database allows people to model and manage data. A personnel
manager, for instance, would use a database to keep track of employees. Such a database
might contain each person’s name, ID number, an address, an evaluation, a salary, and
perhaps even a picture. The manager might then ask the database to show all employees
whose evaluation ranking falls within a specific range, like between 0 and 3. Or the manager
might ask the database to increase by 10% the salary of all people with evaluation rankings
greater than eight. Finally, such a user might ask for a report of all employees, grouped by
ZIP code, so as to mail out the company newsletter.
The office manager, in turn, might use a database to manage the fixed assets of the firm.
Each item might have a bar code attached to it, and the database would contain information
like purchase price, age, depreciated value, and the employee to whom the equipment is
assigned. As part of an office renovation, the office manager might ask the database to tell
him the 100 oldest desks at a particular site. In order to track the performance of the
purchasing department, reports would include a monthly report on the average new price of
certain items.
The purchasing department might have a database of all the qualified office supply vendors,
with their contact names, addresses, phone numbers, items stocked, and prices. In this way
the department can quickly find out which vendors stock desks, and at what price.
Now let’s think about the firm as a whole. A single listing of employees could help both the
personnel manager and the office manager: links could be created between employee
information and the fixed asset data to show which employee is responsible for what
equipment. Of course, this gives rise to security issues, since the personnel manager would
not want the office manager to have access the salary information. Moreover, managing
multiple sets of data requires good data integrity rules— that is, if an employee leaves, the
personnel manager should not be able to delete that employee’s name if he still has
equipment assigned to him. As will be seen below, the best relational database systems
attend to these problems easily.

Why not just use a spreadsheet?

Let’s think closely about this purchasing department alone. You can imagine a spreadsheet
set up with columns called “Vendor Name,” “Address,” “Phone,” “Contact,” “Item,” and
“Price.” Of course, most vendors stock more than one item, so you have several options.
You could make “Item” a very wide field, and then simply type in every item the vendor
stocks, perhaps along with the prices. Or you could re-type the info about each vendor for
every item. Each of these approaches has problems: by typing all pieces of equipment into
one field, you lose the flexibility of being able to see vendors that stock only a particular item.

Re-typing vendors’ names is a waste of space and time, and causes problems if the vendor’s
name, address, or contact name changes.
In general, using a spreadsheet to handle complex data gives rise to a number of problems.
While spreadsheets are conceptually straightforward (hence their popularity), they fall short
when there are relationships between data, when more than one person needs access to
data, or when the amount of data is large. Specifically, spreadsheets stumble with:
• Referential Integrity. Imagine a company that uses spreadsheets to keep track of its

employees. If an employee leaves the company, there is no single point in a
spreadsheet database where a user can go to change every reference to that employee
from “current” to “former.” A relational database would not allow a user to delete an
employee’s name without, say, reassigning all the furniture and other assets that
belonged to him.

• Data Integrity and Validity. A spreadsheet has no means to limit acceptable values
that go into a given cell. Any sort of database loses its value if the data cannot be
trusted; databases give the designer mechanisms to ensure that values entered into the
database are valid. Thus if a designer wanted to limit the data under “Amount of Sale” to
positive numbers (and thus force returned merchandise to be handled correctly), she
could.

• Data Redundancy. As noted above, a user of a spreadsheet database might be forced
to re-type multiple instances of the same information, as is the case when one vendor
stocks multiple items. Not only is this inefficient, but it also causes problems when items
in the database change: if a vendor changes its name, users must then go and change
every instance of that name, instead of accessing one central data point.

• Limiting Data. Spreadsheets do not allow a user to limit the working set of data— one
must always work either with the entire data set or create a subset that users must then
use to re-update the larger set.

• Performance and Capacity. Large amounts of data slow a spreadsheet to a crawl.
And because spreadsheets lack speed-up features like indexes, searching through the
data can be an excruciatingly lengthy process.

• Data Entry. Spreadsheets have no concept of forms, so only the simplest forms can be
reflected on a spreadsheet-based data-entry screen.

• Reporting. Similarly, because spreadsheets lack tools to allow quick grouping and
summarizing, all reporting functionality must be manually “hard-wired.”

• Programmability. Spreadsheet macros are notoriously brittle and lack sophisticated
control devices and error checking. Most databases, by contrast, are closely tied to full-
featured programming languages.

• Multiple users. While usable multi-user spreadsheets are still a thing of the future,
many databases have supported multiple users from their inception. With a database,
multiple users can work with the same information at the same time, without worrying
about concurrency problems— the database manages that.

A database solves the problems of the purchasing department, for instance, by allowing
users to create multiple sets of data and link them. One might have one data set called
“Vendors,” with a complete list of vendors’ names, addresses, and ID numbers, and a
separate set called “Products,” with product names and vendor IDs. By linking the two sets
on a common characteristic like vendor ID, a user avoids the problems of redundancy and
data integrity. Now vendors’ names only get entered once, and products can be sorted
individually. And multiple users can access up-to-date data simultaneously.

Where do Databases Come From?
The history of database management systems (DBMS) is closely tied to the history of the
whole computer industry and has progressed through at least three states or epochs:

Hierarchical DBMS, Network DBMS, and Relational DBMS. Because DBMS software is
complex and because of the large intellectual investment and time spent developing
applications, once a particular system is adopted by a customer, that system can have a
very long life. Systems from different epochs live well into the eras of later technology.

Hierarchical Databases.
In the 1960s the first modern mainframe computers were developed. This included the
IBM® System/360 with OS/360, first delivered in 1963. These computers were extremely
expensive, and both computing power and data storage consumed a large portion of a
company’s data processing budget. When storing and accessing data, therefore, the
primary concern was to use space and computer time as efficiently as possible.
Hierarchical DBMSs became popular because of their excellent performance and storage
efficiency. In such a database, data is organized like an inverted tree— a series of nodes
with branches connecting the nodes. These systems were by no means easy to use: to get
at data, a user had to navigate through a complex web of hard-wired relationships. But as
long as data was accessed in a top-down fashion in a consistent manner, and as long as the
relationships between the data did not change, this technology worked well. Unfortunately,
this is hardly ever the case.

Network Databases.
During the 1970s, DEC and other companies developed the minicomputer. At the same
time, hierarchical databases evolved to become network databases. These DBMSs allowed
more complex data relationships to be “hard wired” into the system. Instead of allowing only
top-down parent-child relationships, network DBMSs can support entire systems of pre-
defined relationships, including lateral links. Of course, the user still had to understand these
hard-wired relationships in order to access data.
The move towards on-line transaction processing helped change the course of database
history. Both hierarchical and network databases moved to support on-line, interactive
users, instead of simply batch processing. However, because of the difficulties in changing
DBMSs, most hierarchical systems lagged behind network systems in providing on-line
transaction support. The network DBMS became the workhorse of the minicomputer-based
on-line transaction processing world.

Relational Databases.
In the early 1970s, IBM’s E.F. Codd published a paper on his research into a new form of
DBMS structure based on a mathematical foundation, the relational database. IBM began
work on SYSTEM/R, which later became SQL/DS and then DB2. Oracle® shipped the first
commercial relational database system, Oracle, in 1978.
Codd developed the relational model to overcome the problem of database rigidity.
Relational systems insulate the end-user from the physical links in the database and allow
the relationships between data to be easily restructured, thus responding quickly to changing
needs. That is, where before it was necessary to understand and navigate through a maze
of relationships, a relational database theoretically made it possible to ignore these
underlying complexities.
The central metaphor of a relational DBMS is the table. A table is a set of information
concerning a given topic. A table called “Customers” would describe a company’s
customers by giving the name and related information about each one. By definition, a
(correctly used) relational database contains multiple tables. A typical customer database
might contain the tables “Customer Names” and “Customer Transactions.” And a book
publisher might have a database containing the tables “Titles,” “Customers,” “Authors,” and
“Commission Rates.”

Tables are in turn broken down into records, which give information about a certain item in a
table, and fields, which contain discrete nuggets of information about each record. Records
are like cards in a 3x5 card file; fields are like the spaces for “Name,” “Address,” and “Phone
Number” on each card. In the case of a book publisher, the customer table would probably
be organized into records (rows), with each record representing a customer, and fields
(columns) named “name,” “address,” and so on. The Titles table would then have a record
for each book and fields called “title,” “author,” and “retail price.”
Early relational DBMSs were significantly slower than established hierarchical and network
systems. Recently, however, much has been done to improve their performance.
Optimizers, for instance, have sped up queries significantly. Just as high-level programming
languages relieve developers from managing all the machine details, optimizers adjust
queries so that they are executed efficiently regardless of how they are worded. Thus
comparing a 100-record table to a 1,000-record table (which requires 100 match attempts)
can be made as fast as comparing a 1,000-record table to one with 100 records (which, if
inefficiently performed, could comprise as many as 1,000 match attempts).

Enter the PC.
As personal computers became available in the late 1970s, two interesting things happened.
First, a large number of users began to realize that the PC was a serious machine. One
could build real-world applications on micros. To help support this development, various
productivity tools were developed. In addition to spreadsheets and word processors, PC
DBMSs became one of the most important tools in a user’s suite of applications.
Second, file management systems became popular. Very few people would use a
mainframe to manage lists of personal information. Because of the dedicated nature of the
PC, users were interested in sorting personal information, primarily lists. The two sets of
needs— list management and application development— clearly segmented the PC DBMS
market. Only in the last several years has the PC database market had anything other than
two poles: a “high end,” consisting of programming environments, and a “low end” made up
of flat-file databases, or “filers.” See Section 7 for a complete description of each of these
types of database systems.

How Does One Use a Relational Database?
While user interfaces for relational database programs differ considerably, the underlying
functionality is similar regardless of the product. This section describes how one might
typically design and use a database. Note that it refers primarily to the programming-
oriented relational databases like Paradox®, dBASE, and R:BASE® described above in
Section 7.3.

Database design
The first step a user must take is that of designing the database— that is, thinking through
the various tables, forms, and reports that will likely be needed. Currently, no product is
particularly helpful at this stage: just as the best word processor cannot compose a letter,
database products aren’t very good at anticipating what structure would best suit a user’s
needs.
A large part of the challenge of database design results from the fact that the best way for a
database to store and manipulate data is frequently not the best way for a user to access
that data. As noted above, all databases have various modes in which they operate, e.g.,
browsing mode, reporting mode, forms creation mode, etc. Each of these modes puts
different demands on the database system; what makes life complicated is that a user must
think through each of these, considering both his information needs and those of the
database itself.

Table design
The first step in which the program is actually used is table design. The user starts with a
single table, giving it a name and determining the fields that will comprise it. He then must
decide each field’s type— that is, what kind of data will be entered into that field, be it
alphabetical, numeric, logical, dates, or whatever. A given field can only contain a single
type of data, and choosing that type can be of critical importance. Mis-assigning the field
“Cost” as an alphanumeric field increases the difficulty of summing that field, for example.
The user then assigns certain properties to each field. For alphabetic fields, for instance, a
user might specify a maximum length of 20 characters. Another field might only accept
positive numbers in it. A very important step is assigning one or more fields as the primary
key which will uniquely identify each record, such as an employee number. This field will
both speed up searches and allow users to link tables together based on that key. A user
might assign an index to other fields, creating a behind-the-scenes series of pointers that
allows the database application to find records quickly within that field.

Data Entry
Having designed one or more tables, a user might choose to enter data (either using the
keyboard in a spreadsheet-type browse mode or through some data import facility) or create
a form that would allow easier data entry. Most products have a forms creation mode that
allows picking and choosing fields from a table and placing them on a form, and then
painting the screen to resemble, say, an order form. More complex forms include those with
lookup boxes that allow a user to pick from acceptable values from one table to enter into a
given field in another table, or list boxes that permit more than one item to be associated with
a given record, as is the case when one vendor stocks multiple items.

Queries
To ask the database questions, a user must enter query mode. Many products have several
ways to perform queries. For years, the standard way to query a database was to write a
line of code in interactive mode that said, for instance, “Sum all Payments for State=’WA’.”
That is, in order to ask a question, the user had to know the language that the database

spoke. While these languages are frequently fairly straightforward— they still require
considerable time to learn the proper syntax and lexicon.

Query By Example, or QBE, offers a means for users to query a database without learning a
procedural language. Under a QBE system, a user would see a display of the field names
from those tables he wanted to query. He would then move his cursor around the screen,
checking off columns that he wanted to see, putting criteria like “WA” under fields like State,
and so forth. The user then presses a key to execute the query and get the answer. Now,
the implementation of this feature can differ considerably: dBASE and R:BASE use QBE to
generate the appropriate line of code, display that code on the screen, and then execute the
query. Paradox and DataEase (whose Query by Form is similar) generate no lines of code
in the traditional sense; instead, the QBE itself serves as code.

Reports
Another step in using a database is creating reports. As in forms design, a screen painting
routine helps the user to lay out the document, add field names, and draw boarders. In
addition, a user must determine how to group and summarize the data: reports are usually
grouped into meaningful divisions on which the user can subtotal and total. Formatting,
headers and footers can then be added to round out the document.

Database Configurations
Most relational databases can be configured to work as either a standalone product or as a
part of a file server LAN. Increasingly, RDBMSs can serve as the front end in a client-server
environment as well, though with varying degrees of ease. This section outlines the
differences between these three configurations.

Standalone databases
A standalone database user manipulates data on a single machine. The data resides
locally, usually on the machine’s hard disk, and is used by only the person logged on. In the
past, the data was almost always homogeneous— that is, a given product could work only
with data stored in that product’s format. dBASE users, for instance, could work directly only
with dBASE data; using data import and export, they could translate files to and from formats
like Lotus and ASCII. Recently, however, DBMSs have been given the ability to manipulate
data in non-native formats— R:BASE, for example, can read and write dBASE data files
directly, though with some loss of performance.
Using a database in standalone mode is completely adequate in many situations. By
definition, however, it cannot allow different members of a workgroup to share information
easily: no two users can access data simultaneously. Recognizing the many advantages

that result from the sharing of enterprise-wide computer data by different functional areas,
many companies are now trying to integrate their computing resources.

LAN File Servers

LAN File Servers give companies one way to do this. In this configuration, a single computer
is dedicated to holding all database files, controlling access, and providing security. Users
then can access this remote data over the network as if it resides on their own computers
(though usually with some degradation in speed). In most systems, multiple users can
access the same table simultaneously; the program updates the various local tables
periodically.
LAN file server arrangements allow data sharing, then, but at some cost. Large amounts of
data has to travel across network lines: because all processing is performed at the local level
rather than at the server, entire tables must be sent between the server and the user. And
because the server functions as little more than a storage device, data integrity and security
are problematical.

Client/Server
Client/server architecture refers to a technology that combines the capabilities of large
database management systems with the ease of use associated with PCs. As in the LAN
file sharing system, the database server is a dedicated machine in a LAN environment that
holds all the database files, controls access, and handles security. In addition, however, the
server has an “engine” that can look after data integrity and processes requests for data from
workstations in the network.
This system provides both centralized database control and generalized database access.
The application’s user interface is stored at the individual workstation, while the database
engine is installed on a network server. The engine (or back end) provides security and
concurrency control. Separating an application into two functions (front end and back end)
allows the workstation to be optimized for ease of use and the server to be optimized for
maximum throughput.
When a workstation application, or client, requires data for its task, it requests the data from
the database server. Rather than give the workstation a copy of the entire database (which
may contain thousands of records), the server sends only the relevant subset, reducing both
the message traffic across the network and the amount of processing performed at the
workstation.
Structured Query Language (SQL, often pronounced “sequel”) is one common way to handle
communications between workstations and servers. Developed by IBM for use with its DB2
mainframe relational database, SQL has since moved onto PCs as a way for workstations to
gain access to remote data. It is a set-based language designed to perform relational
database queries quickly with as few verbs and objects as possible.
The benefits of a standard data manipulation language like SQL are as clear as having a
common language among people. As with Esperanto, however, problems arise in the
implementation. First, the SQL standard isn’t quite standard. Due in part to the
inadequacies of the ANSI standard, SQL’s various vendors have introduced proprietary
extensions to customize the language. Second, integrating SQL into another language—
say, dBASE— is a tricky affair that can cause almost as many problems as it solves. Finally,
while SQL is a powerful data manipulation language, it is a disastrous end-user tool. The
syntax can be confusing and queries are often difficult to decipher. Insulating the end-user
from SQL’s complexities while allowing programmers to get at its power is a tricky prospect
that DBMS makers are still fine tuning.

Glossary

Back-end The server part of a client/server system that
processes requests for data.

Break Level A reporting function that allows a user to summarize
information by category.

Browse Mode A mode of operation in a database that gives users a
spreadsheet-like view of multiple records. Contrast
with Forms Mode.

Client/Server Refers to the division of database management into
two software components, with the client at the front
end sending and requesting data and the server at
the back end acting as a data store.

Commit A statement issued by a user in a multi-user
environment that indicates that the user is finished
editing certain records and that the database should
recognize those changes.

Concurrency Multiple users accessing data simultaneously gives
rise to concurrency issues. DBMS systems use
locks to provide a means to ensure data integrity
when more than one user is editing data at once.

Crosstab A query or report that displays its answer in rows and
columns. The user chooses items to be displayed
horizontally (like months) and vertically (like
salespeople), and the database generates an answer
that, say, sums each salesperson’s sales by month.

Data Type A characteristic of a particular field. Databases
require that all data within a given field be of a single
type. Common types include alphanumeric, numeric,
logical, date, and time.

DBMS Acronym for Database Management System
Engine The part of the database where data is stored. Can

be local (residing on the same PC as the interface) or
remote.

Expression A combination of operators (like < and >) and values
(such as text or numbers) that a database evaluates.

Field A category of information, such as a last name.
Fields are usually represented as columns.

Filer A simple database that deals with only one table at a
time. Also called flat-file databases.

Form An on-screen representation of a data-entry form.
Forms usually look simple to the end-user, but often
hide complexities under their surface: data entered
into a single form may be sent to many different
underlying tables, for instance.

Forms Mode A mode of operation on a database that gives users
a customized view of a single record. Often this form
resembles a paper form. A single form can present
data from multiple tables. Contrast with Browse
Mode.

Front-end The client part of a client/server system that
comprises the user interface.

Index A group of pointers that allows a DBMS to find values
in a certain field quickly.

Join A database operation that combines some or all
records from two different tables.

Key One or more fields (columns) that uniquely identify
each record. Examples include employee numbers
and stock numbers. Relational databases usually
require that one field (column) of each table be
designated a key field to facilitate linking tables to
each other.

Locking The process of temporarily shutting out users in a
multi-user system so that they do not interfere with
each other. Locks can be placed either on tables or
rows (records), with row locking allowing greater
flexibility.

Optimizer An element of a DBMS that determines the fastest
way to resolve queries. Sophisticated optimizers
rearrange the sequence of data requests, build
temporary indexes, and perform other magic to get
the answer back to the user as quickly as possible.

QBE Query By Example. A way of requesting information
by specifying the criteria visually— filling in the
blanks— rather than through a programming
language.

QBF Query by Form. A variation on Query By Example
that allows users to fill in a data-entry form to limit the
working set of data to those records that match the
criteria.

Query A question that a user asks a database. Queries can
either request information (like a Select query) or
request that the database perform an action (like a
Delete query).

Record All of the information about a person, place, event, or
some other thing. A record is represented as a row
in a table.

Relational DBMS A database in which the user can create
relationships between different sets of data called
tables, allowing for more efficient and non-redundant
data storage and manipulation.

Relationship The way in which fields (columns) in two or more
different tables are related. There are three
fundamental relationships: one-to-one, one-to many,
and many-to-many.

Report A printed or on-screen display of specific information
from a database, usually with some summarizing
characteristics (like subtotals or averages).

Rollback A statement issued by a user in a multi-user
environment that indicates that the user is finished
editing certain records but that the changes should
be ignored.

SQL Structured Query Language, a standard data
manipulation language. SQL is an efficient language
that many DBMS know how to speak, but is clumsy
as an end-user tool. Thus many DBMSs have
custom user interfaces that hide the complexities of
SQL from users, but transmit SQL code to servers for
processing.

SQL Server A product developed by Sybase® and co-marketed
by Ashton-Tate and Microsoft that acts as a server in
client/server architectures. Many “front-end” clients
can talk to SQL server with SQL.

Table A term that refers to a set of data, usually about a
particular category of things like employees or
invoices. Consists of fields (columns) and records
(rows).

View A “virtual” representation of the information in a
database, used for convenience in performing
queries or analysis. For example, a view might
involve a temporary table that is actually a join of two
existing data tables.

© 1995 Microsoft Corporation. All rights reserved.
The information contained in this document represents the current view of Microsoft
Corporation on the issues discussed as of the date of publication. Because Microsoft must
respond to changing market conditions, it should not be interpreted to be a commitment on
the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information
presented after the date of publication.
This document is for informational purposes only. MICROSOFT MAKES NO WARRANTIES,
EXPRESS OR IMPLIED, IN THIS DOCUMENT.
Microsoft, Windows, the Office Compatible logo, and Windows NT are either registered
trademarks or trademarks of Microsoft in the United States and/or other countries.
R:BASE is a registered trademark of Microrim, Inc.
dBASE and Paradox are registered trademarks of Borland International, Inc.
IBM is a registered trademark of International Business Machines Corporation.
ORACLE is a registered trademark of Oracle Corporation.
SYBASE is a registered trademark of Sybase, Inc.

